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ABSTRACT 
Anti-virus applications play an important role in today’s 
Internet communication security. Virus scanning is usually 
performed on email, web and file transfer traffic flows at 
intranet security gateways. The performance of popular 
anti-virus applications relies on the pattern matching 
algorithms implemented in these security devices. The 
growth of network bandwidth and the increase of virus 
signatures call for high speed and scalable pattern matching 
algorithms. Motivated by several observations of a real-life 
virus signature database from Clam-AV, a popular anti-
virus application, a fast pattern matching algorithm named 
MRSI is proposed in this paper. Compared to the current 
algorithm implemented in Clam-AV, MRSI achieved an 
80%~100% faster virus scanning speed without excessive 
memory usages. 
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1. INTRODUCTION 
Virus has become a major threat to today’s Internet 
communications. Virus detection has become an essential 
part in today’s network communication security. Most 
Intranet security gateway solutions have integrated an anti-
virus module, which performs virus scanning on email, web 
and file transfer traffic flows. As the network bandwidth 
and the number of virus signatures increases, there is a 
great demand for high speed and scalable pattern matching 
algorithms. 
The importance of fast anti-virus solution includes: 
♦ First, in terms of network traffic scanning, speed is 

essential for it not to become bottleneck. Hence, most 
integrated intranet security gateways also play roles as 
firewall and NIDS (network intrusion detection 
system). The performance of anti-virus module could 

have great influence on the overall performance, given 
limited CPU resource and cache size. 

♦ Second, the number of virus signatures keeps growing 
everyday, thus it requires the solution to be scalable in 
order to deal with more and more signatures. 

♦ Third, the growth of network bandwidth also requires 
high speed pattern matching algorithm.   

Clam-AV [4] is a well-known and widely used anti-virus 
solution on UNIX platforms. Clam-AV has implemented an 
extended version of BM (BMEXT) as a core pattern 
matching algorithm for scanning basic signatures. Although 
this algorithm adopts a series of heuristics to increase the 
scanning speed of the original BM [2] algorithm, BMEXT 
still performs poorly when handling tens of thousands 
signatures in some of the Clam-AV data sets. 
Thus in this paper, we present a high performance pattern 
matching algorithm to further accelerate the scanning speed 
of anti-virus applications. The contribution of this paper 
can be described in three aspects. 
♦ First, we analyzed the virus signatures extracted from 

Clam-AV and summarized several characteristics. We 
also analyzed the algorithms implemented in Clam-
AV to match these signatures and pointed out there is 
room for improvement.  

♦ Second, a fast pattern matching algorithm called 
MRSI was designed, according to observations of real 
virus signatures and anti-virus applications. 

♦ Third, by implementing MRSI in the anti-virus system 
Clam-AV, an improvement on performance by a 
factor of 1.8 to 2 was obtained. 

The following of this paper is organized as follows: Section 
2 briefly reviews related works. Section 3 gives a deep 
analysis of the virus signatures and the current solution to 
the problem in Clam-AV. Section 4 shows the core ideas 
that motivated us to design MRSI and how it works. 
Section 5 holds all the performance evaluation results. 
Section 6 gives a summary of the whole paper and discuss 
about some future work.  
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2. RELATED WORK 
The related work of this paper includes various pattern 
matching algorithms and other approaches used to 
accelerate the scanning stage of anti-virus applications. The 
word “pattern” usually refers to the hexadecimal string in a 
virus signature. 
Many pattern matching algorithms [3], [10], [11], [12] have 
been proposed to solve the problem of intrusion detection 
system (IDS). Most of them are shift based algorithms, 
which originates from a classic single pattern matching 
algorithm BM [2]. The core idea of BM is to utilize 
information from the pattern itself to quickly shift the text 
during searching to reduce number of compares as many as 
possible. BM introduces a bad character heuristic to 
effectively capture such information [2]. 
♦ Bad character heuristic: A mismatch occurs during 
character by character checking when the character ‘α’ in 
the text does match the character ‘β’ in the pattern. The text 
can be then shifted at least to align the mismatch character 
‘α’ with the last occurrence of ‘α’ in the pattern or align the 
character ‘α’ to the end of the pattern if there is no ‘α’ in 
the pattern. 
Hash-AV [6] introduced an approach to use cache-resident 
bloom filters to quickly determine most no-match cases. 
However bloom filters have false positives. In order to 
further check those positive cases, Hash-AV has to be used 
together with the original Clam-AV. 

3. UNDERSTANDING ANTI-VIRUS 
Clam-AV is a widely used open source (GPL) anti-virus 
application. It has been integrated into Unified Threat 
Management Systems (UTM), Secure Web Gateways and 
Secure Mail Gateways [5]. It provides an anti-virus engine 
in the form of a shared library. The Clam-AV team keeps 
maintaining the software and regularly updates the virus 
signature database. 

3.1 Analyzing Virus Signatures 
Currently, the total number of signatures in Clam-AV is 
about 150,000, and the number keeps increasing constantly. 
In this paper, we take the virus database downloaded from 
http://www.clamav.net on Aug 20th 2007 as a sample to 
analyze the general characteristics of a typical anti-virus 
signature database. 

3.1.1 Three Major Types of Signatures in Clam-AV 
Most of the signatures defined in Clam-AV can be 
categorized into three major types.  
♦ Basic Signatures: Basic signatures are all hexadecimal 
strings. Clam-AV matches these signatures to the whole 
content of a file according to a sub category of files. 
♦ MD5 Signatures: MD5 checksum for an executable 
virus file, MD5 for a white list executable file and MD5 
checksum of a specific section in a Portable Executable file. 

Clam-AV matches signatures to a target file’s MD5 
checksum or the MD5 checksum of a specific section. 
♦ Regular Expression Signatures: Actually an extended 
version of the basic signatures, which support several kinds 
of wildcards. Clam-AV matches these signatures to the 
whole content of a file. Although Clam-AV does not fully 
support standard regular expression, in this paper we refer 
to this type as regular expression signatures. 
Except from these three major types, there are only a few 
other signatures for certain extended functions. There are 
66 signatures for archive metadata and also 167 signatures 
for anti-phishing. 

3.1.2 Identifying Performance Bottleneck 
Table 1 shows the number of signatures for three major 
types and the others. 

Table 1. Different Types of Signatures 

 Basic MD5 Regex Other Total 
Num 78501 64758 4844 233 148270 

% 52.9% 43.7% 3.3% 0.16% 100.00% 

In order to observe the system’s scanning overhead on 
different types of signatures, we injected several lines of 
codes to Clam-AV to calculate the time spent on matching 
each type of signatures in a typical scan. The experiment 
was performed on a 10 Mbytes randomly generated file and 
the result is shown in the following table. 
Table 2. Scanning Overhead on Different Types of Signatures 

 Basic MD5 Regex Total 
Time (s) 6.200 0.054 2.190 8.444 

% 73.4% 0.64% 25.9% 100% 

According to the above experiment result, obviously 
matching the basic signatures consumes a large part of the 
scanning time. As a result, we focus our work of this paper 
on matching basic signatures to improve the virus scanning 
speed on Clam-AV. 

3.1.3 Further Analyzing Basic Signatures 
The basic signatures are further divided into 7 subsets 
according to file types, indexed from 0 to 6 for the 
convenience of analysis. The signatures in each subset 
apply to certain types of files. For example subset #0 
applies to any file and subset #1 applies to portable 
executable files [4]. 

Table 3. Statistics of Basic Signatures 

Idx Total 
Number 

Average 
Length 

Min 
Length 

Len<9 
Num 

0 29611 67.5 10 0 
1 46954 123.7 4 8 
2 164 106.8 28 0 
3 1402 110.7 14 0 
4 355 46.6 17 0 
5 0 n/a n/a 0 
6 15 105.1 17 0 
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Table 3 shows several important statistical characteristics 
of the 7 subsets of basic signatures. We believe that it is 
crucial and possible to designing a better pattern matching 
algorithm according to the three observations. 
From these analyses, we have three observations that 
motivated us to design novel algorithms: 
♦ Large scale signature set: Even the scale of a virus 
signature subset is much bigger than a traditional IDS 
system. For example, the subset #1 has 46,954 signatures 
while Snort [8] only has about 3,000 signatures in total. 
♦ Longer average length: The average signature length 
of these 7 sub categories are from 46 to 124, which are 
much longer compared to IDS signatures. 
♦ Very few short signatures: Generally, signatures with 
length less than 9 characters can be viewed as short 
signatures. Thus, there are only 8 short signatures in subset 
#1 while there are no short signatures in other subsets.  

3.2 Clam-AV’s Solution and Limitations 
The current version of Clam-AV used two pattern matching 
algorithms. The basic signatures are handled by an 
extended version of BM [2] (BMEXT) and the regular 
expression signatures are handled by a modified AC [1] 
algorithm. 
Firstly, when implemented with DFA [9] data structure, AC 
consumes a large amount of memory for such large scale 
signature database. If implemented with NFA [9] data 
structure, there are several memory compressing techniques 
available to reduce memory consumption, however such 
techniques usually come with more memory access, which 
would hurt the performance badly. 
Secondly, the BMEXT uses the last 3 characters of a 
signature to generate shifts. Given that the average length 
and shortest length of virus signatures are comparably long, 
we believe larger shifts could be produced by utilizing 
more characters of existing signature.  

4. Multi-block Recursive Shift Indexing 
 This section will first give a brief introduction to the core 
idea of RSI which is the base of MRSI and then discuss 
more about the motivations behind MRSI. 

4.1 Brief Introduction of RSI 
RSI [3] is a high performance multi pattern matching 
algorithm designed specifically for IDS applications. The 
core idea of RSI is to use two levels of block heuristic to 
produce shifts. 
♦ Block Heuristic: The original BM bad character 
heuristic uses 1 character to calculate shift value [2], while 
RSI uses 2 characters as a block heuristic. 
♦ Stage 1: The first level uses two BLTs (Block Leap 
Table), with each BLT using a 2 characters block heuristic. 
In the first stage of scanning, each BLT returns a shift value. 

If they are not both zeros, the larger one can be used as a 
shift value. 
♦ Stage 2: The second level introduces a 4 characters 
block heuristic. When both BLTs return zero in the first 
stage of scanning, then a Further Leap Table (FLT) is 
introduced in the second stage of scanning. The FLT is an 
intersection of zero entries of both BLTs in the first level, 
thus it is actually a 4 characters block heuristic and the size 
of the FLT is limited to the square of number of patterns.  
♦ Stage 3: If the FLT in the second stage of scanning still 
returns zero, a Potential Match Table (PMT) is used and 
each entry of PMT links all the potential match patterns 
with the same first 4 characters. Thus the size of PMT is 
limited to the number of patterns. 

4.2 The Problem of Adapting RSI 
There are two major problems if we directly implement 
RSI directly in Clam-AV. 
♦ First, the size of FLT is n2 in the worst case, where n 

is the number of patterns. Given that the largest virus 
signature subset has about 47,000 patterns, the size of 
FLT could be 470002*2 bytes, about 4 Gbytes in the 
worst case. It takes too much memory and the 
preprocessing of shift values for such a large FLT 
could be very time consuming. 

♦ Second, the possibility of getting both zeros from the 
two BLTs in the first stage will increase a lot when 
the number of patterns grows from 1,000 to 47,000. 

Thus, we need to seek novel ideas and heuristics to resolve 
these two problems. 

4.3 MRSI Motivations and Solution 
In section 3, we gave a thorough analysis of the virus 
signatures and discussed the problem of the current 
solutions in Clam-AV. Some of these observations lead to 
the motivations behind MRSI in this section. 

4.3.1 Using 3 BLTs 
Before we explain how MRSI works, we will first present 
another important observation in a deep analysis of the 
basic signatures, which motivated us to use 3 BLTs in 
MRSI. 
Although directly adapting RSI is not practical, the idea of 
using a block heuristic would be helpful in our design of a 
new shift based algorithm. In order to understand the 
possibilities of getting a non-zero shift by using block 
heuristic, we did an analysis of the first 6 characters of all 
signatures by dividing them into three 2 characters blocks. 
♦ Assumption 1: every character in the content of the 
target file is randomly generated by a uniform distribution 
function. (P(c)=1/256, where c=0~255) 
A 2 characters block has 65536 different values, which 
should be also of uniform distribution given assumption 1. 
However not all of them appear in the corresponding 
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position of signatures. For example, if a value ‘x’ 
(0≤x≤65535) does not appear in the first 2 characters of all 
signatures, there should be a non-zero shift for this value 
‘x’ when ‘x’ appears in the target file. Given assumption 1, 
we define the number of such values divided by 65536 to 
be the possibility of non-zero shifts for this block. 
Then we computed the possibility of non-zero shifts for the 
first 3 blocks of all signatures (excluding signatures that are 
shorter than 6) with 2 characters in each block. Then we 
use P1 to stand for the possibility of non-zero shifts at block 
1, P2 for block 2 and P3 for Block 3. 
Thus, if we only use block 1, the possibility of non-zero 
shifts equals P1. If we use two blocks, either block can 
return a non-zero shift, so the possibility of non-zero shifts 
for using two blocks should be: 

1 1 2(1 )P P P+ −  

Analogically, the possibility of non-zero shifts using 3 
blocks should be: 

1 1 2 1 2 3(1 ) (1 )(1 )P P P P P P+ − + − −  

By applying these calculations to the largest two subsets of 
basic signatures, we got the results shown in Table 4. 

Table 4. Possibility of Non-zero Shifts 

Idx Total Num 1 BLT 2 BLTs 3 BLTs 
0 29611 81.9% 91.6% 99.4% 
1 46954 54.8% 79.6% 90.8% 

Obviously, by using 3 blocks instead of 2 blocks or 1 block, 
there could be much more potential non-zero shifts. This 
motivates us to use 3 BLTs in MRSI. 

4.3.2 Matching Short Signatures Separately 
From our previous analysis of Clam-AV’s basic signatures 
in section 1, we know that there are only 8 signatures that 
are shorter than 9 characters. 
By further exploring these short signatures, we found that 
they are all defined with an offset. This means they should 
only be matched to a specific position of a file. For 
example, the shortest signature in sub category #1 is 
defined as “W32.Deadc0de:1:64:dec0adde”, which means 
only when the pattern “dec0adde” is matched at offset 64. 
It indicates a virus called “W32.Deadc0de”. 
Thus these signatures can be quickly checked by a direct 
brute-force check. In our implementation of MRSI, we do 
this for all patterns that are shorter than 9 characters. 

4.3.3 Indexing a Potential Match Table 
According to our observation 3.3.1, using 6 characters (3 
BLTs) instead of 4 characters (2 BLTs) could generate 
more shifts and bigger shifts, assuming randomly generated 
file. The problem is how to index the potential match 
signatures when all 3 BLT returns zero shifts. 
The original RSI (2 Block Leap Tables) uses the zero 
entries of the FLT to index a PMT, which link to all the 

potential match signatures for each entry. The size of PMT 
is the product of the number of zero entries in BLT1 and 
the number of zero entries in BLT2. As a result, for the 
subset 1 of about 50,000 signatures, the size of PMT is 
estimated to be more than 1 Gbytes. 
MRSI’s solution to this problem is not using a FLT but to 
use zero entries in BLT1 to index PMT. In this way, the 
PMT’s size can be limited to the number of zero entries in 
BLT1. The trade-off is that the number of potential match 
signatures in one PMT entry becomes bigger than using a 
FLT. However, in a typical application environment, most 
of the files do not contain any virus. The possibility of all 3 
BLTs returning zero at the same time should be quite low 
in such cases, consequently the possibility of actually 
matching a PMT entry should be low. 

4.3.4 MRSI Description 
We incorporated all these three motivations into one 
algorithm, Multi-block Recursive Shift Indexing (MRSI). 
The MRSI algorithm can be described in two parts: 

♦ Preprocessing Stage 
In the preprocessing stage, the algorithm creates and 
initializes all the necessary data structures for the later 
scanning stage. First it creates 3 BLTs for the first 6 
characters. Then a PMT is created and indexed sequentially 
by the zero entries in BLT1, and each entry of the PMT is 
linked to the signatures that could be a potential match at 
this position. 
For Example, if BLT1[α] has a zero value, all the 
signatures with the same first two characters of value α 
should be linked to the corresponding entry of the PMT. 
♦ Scanning Stage 
The scanning stage is comparably quite simply once all the 
necessary data structures are created. There are two phases 
in the scanning stage. 

BLT 1

2

3

……

m-2

BLT 2BLT 3

E           FC           DA           B……

Sig 2

Sig 3

……

m-1

m

Phase 1

Phase 2

PMT

Sig 1

……

1

 
Figure 1.  Data Structures and Two Phases of Scanning 

In phase 1, 6 characters will be read from the target data, 
and then they are used as three keys to lookup the three 
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BLTs respectively. If three lookup results are not all zeros, 
then we get the largest one of the three shift values. The 
target data can be shifted by this value, and then phase 1 
will be repeated at the new position of the target data. 
If all three shift values are zeros, then the PMT table will 
be checked to match a list of potential match signatures. 
For each potential match signature, a brute-force check is 
used to validate if there is really a match. 
The data structures and the two phases of scanning stage 
are shown in Figure 1. The string “ABCDEF” is used as a 
sample fraction in target data to demonstrate our algorithm 
in Figure 1. The PMT have m entries, where m is the 
number of zero entries in BLT1. 

5. PERFORMANCE EVALUATION 
In this section, several experiments were designed to give a 
full performance evaluation of our new algorithm. First a 
pure algorithm performance evaluation was performed to 
help understand the performance of MRSI under different 
circumstances compared to the current solution called 
BMEXT in Clam-AV. We then implemented MRSI in 
Clam-AV to see the actual performance improvement. 

5.1 Algorithm Performance Evaluation 
The experiments were all performed on an x86 Pentium 4 
computer. The MRSI algorithm was written in C 
programming language so that it well supports cross 
platform applications. 
All the Signatures were extracted from Clam-AV’s 
signature database of Aug 20 2007. The largest two subsets 
of the basic signatures, subset 0 and subset 1 were selected 
for most of our experiments because the other subsets are 
comparably very small. 
The target data was a 100 Mbytes randomly generated file 
using a uniform distribution function. 

5.1.1 Performance on real Clam-AV Subsets 
The experiments were performed with subset #0 of 29611 
signatures and subset #1 of 46954 signatures. The memory 
consumption of all the data structures was calculated for 
both algorithms. The time cost in the scanning stage was 
recorded for both algorithms and then translated to the 
scanning speed in Mbps. The results are shown in Figure 1. 
Figure 2 clearly shows that MRSI scanned the target data 
much faster than BMEXT on both subset #0 and subset #1. 
At the same time, Figure 3 shows that MRSI did not bring 
in excessive memory usages. This observation can be 
explained by the data structures of both algorithms. 
In BMEXT, the BM shift table uses about 50~100 Kbytes 
while in MRSI 3 BLTs and 1 PMT uses 64*4 = 256 Kbytes 
at most. However both algorithms store a copy of all the  
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Figure 2. MRSI vs. BMEXT: Scanning Speed 
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Figure 3. MRSI vs. BMEXT: Memory Usage 

patterns in the memory and they cost the major part of 
memory in the above results. 

5.1.2 Scalability Evaluation 
In this experiment, we evaluated the scanning performance 
of both algorithms on different sizes of subsets to 
demonstrate the scalability of MRSI. We randomly selected 
signatures from all the basic signatures to form subsets with 
1K, 5K, 10K, 15K, 20K, 25K, 30K, 40K, 50K, 60K and 
70K signatures. 
Figure 4 shows that both algorithms’ performance dropped 
as the size of the pattern set grew. However MRSI 
constantly outperformed BMEXT with the size of a subset 
growing from 1,000 to 70,000 signatures. 

10

100

1000

0 1 2 3 4 5 6 7
x 10000BMEXT MRSIMbps   

Figure 4. MRSI vs. BMEXT: Scalability 

5.1.3 Performance under Attacks 
In this test, a certain amount of patterns were injected to the 
random generated target data. This kind of target data could 
stand for potential attacking flows to the security gateways. 
Here we define a percentage of matches to measure how 
much of the target data actually matches a pattern. The  
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Figure 5. MRSI vs. BMEXT: Performance under Attacks 

percentage of matches equals the sum of the lengths of all 
matched patterns divided by the length of the target data. 
As the percentage of matches in the target data increased, 
MRSI’s performance dropped, yet still outperformed 
BMEXT with 100% matches target data. 

5.2 Clam-AV’s Performance 
The last test was designed to evaluate the performance of a 
real anti-virus system with MRSI implemented. First MRSI 
was implemented in Clam-AV to replace BMEXT. Two 
sets of data were used in the tests. One was a randomly 
generated file of 100 Mbytes and the other was a sample set 
of several executable files of about 80 Mbytes in total. 
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Figure 6. Real System Performance on Clam-AV 
Figure 6 shows that for both sets of data, the performance 
of Clam-AV had been improved by a factor of 1.8-2 using 
MRSI. 

6. CONCLUSION 
Pattern matching algorithms have been a constantly 
explored field by many researchers in various studies due 
to its importance to network communication security. We 
have distinguished our work in this paper by focusing on 
anti-virus applications. Through a deep analysis of a typical 
virus signature database, we managed to summarize three 
keys observations, which enabled us to design a new fast 
pattern matching algorithm MRSI particularly for anti-virus 
applications. Various performance evaluation tests show 
that MRSI outperformed the current algorithm 
implemented in Clam-AV in many aspects. 
Our future work contains two major parts. On one hand, we 
will go on seeking new observations and novel ideas to 
further improve the algorithm’s performance. On the other 
hand, we plan to implement MRSI on new-generation 

multi-core network processors in order to obtain multi-
Gbps virus scanning speed. 
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