
MRSI: A Fast Pattern Matching Algorithm for Anti-virus
Applications

Xin Zhou1, 2, Bo Xu1, 2, Yaxuan Qi1, 3 and Jun Li1, 3

1Research Institute of Information Technology, Tsinghua University, Beijing, China
2Department of Automation, Tsinghua University, Beijing, China

3Tsinghua National Lab for Information Science and Technology, Beijing, China

x-zhou05@mails.tsinghua.edu.cn

ABSTRACT
Anti-virus applications play an important role in today’s
Internet communication security. Virus scanning is usually
performed on email, web and file transfer traffic flows at
intranet security gateways. The performance of popular
anti-virus applications relies on the pattern matching
algorithms implemented in these security devices. The
growth of network bandwidth and the increase of virus
signatures call for high speed and scalable pattern matching
algorithms. Motivated by several observations of a real-life
virus signature database from Clam-AV, a popular anti-
virus application, a fast pattern matching algorithm named
MRSI is proposed in this paper. Compared to the current
algorithm implemented in Clam-AV, MRSI achieved an
80%~100% faster virus scanning speed without excessive
memory usages.

General Terms
Algorithms, Anti-Virus, Performance

Keywords
Pattern Matching, Virus Signatures

1. INTRODUCTION
Virus has become a major threat to today’s Internet
communications. Virus detection has become an essential
part in today’s network communication security. Most
Intranet security gateway solutions have integrated an anti-
virus module, which performs virus scanning on email, web
and file transfer traffic flows. As the network bandwidth
and the number of virus signatures increases, there is a
great demand for high speed and scalable pattern matching
algorithms.
The importance of fast anti-virus solution includes:
♦ First, in terms of network traffic scanning, speed is

essential for it not to become bottleneck. Hence, most
integrated intranet security gateways also play roles as
firewall and NIDS (network intrusion detection
system). The performance of anti-virus module could

have great influence on the overall performance, given
limited CPU resource and cache size.

♦ Second, the number of virus signatures keeps growing
everyday, thus it requires the solution to be scalable in
order to deal with more and more signatures.

♦ Third, the growth of network bandwidth also requires
high speed pattern matching algorithm.

Clam-AV [4] is a well-known and widely used anti-virus
solution on UNIX platforms. Clam-AV has implemented an
extended version of BM (BMEXT) as a core pattern
matching algorithm for scanning basic signatures. Although
this algorithm adopts a series of heuristics to increase the
scanning speed of the original BM [2] algorithm, BMEXT
still performs poorly when handling tens of thousands
signatures in some of the Clam-AV data sets.
Thus in this paper, we present a high performance pattern
matching algorithm to further accelerate the scanning speed
of anti-virus applications. The contribution of this paper
can be described in three aspects.
♦ First, we analyzed the virus signatures extracted from

Clam-AV and summarized several characteristics. We
also analyzed the algorithms implemented in Clam-
AV to match these signatures and pointed out there is
room for improvement.

♦ Second, a fast pattern matching algorithm called
MRSI was designed, according to observations of real
virus signatures and anti-virus applications.

♦ Third, by implementing MRSI in the anti-virus system
Clam-AV, an improvement on performance by a
factor of 1.8 to 2 was obtained.

The following of this paper is organized as follows: Section
2 briefly reviews related works. Section 3 gives a deep
analysis of the virus signatures and the current solution to
the problem in Clam-AV. Section 4 shows the core ideas
that motivated us to design MRSI and how it works.
Section 5 holds all the performance evaluation results.
Section 6 gives a summary of the whole paper and discuss
about some future work.

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.119

256

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.119

256

2. RELATED WORK
The related work of this paper includes various pattern
matching algorithms and other approaches used to
accelerate the scanning stage of anti-virus applications. The
word “pattern” usually refers to the hexadecimal string in a
virus signature.
Many pattern matching algorithms [3], [10], [11], [12] have
been proposed to solve the problem of intrusion detection
system (IDS). Most of them are shift based algorithms,
which originates from a classic single pattern matching
algorithm BM [2]. The core idea of BM is to utilize
information from the pattern itself to quickly shift the text
during searching to reduce number of compares as many as
possible. BM introduces a bad character heuristic to
effectively capture such information [2].
♦ Bad character heuristic: A mismatch occurs during
character by character checking when the character ‘α’ in
the text does match the character ‘β’ in the pattern. The text
can be then shifted at least to align the mismatch character
‘α’ with the last occurrence of ‘α’ in the pattern or align the
character ‘α’ to the end of the pattern if there is no ‘α’ in
the pattern.
Hash-AV [6] introduced an approach to use cache-resident
bloom filters to quickly determine most no-match cases.
However bloom filters have false positives. In order to
further check those positive cases, Hash-AV has to be used
together with the original Clam-AV.

3. UNDERSTANDING ANTI-VIRUS
Clam-AV is a widely used open source (GPL) anti-virus
application. It has been integrated into Unified Threat
Management Systems (UTM), Secure Web Gateways and
Secure Mail Gateways [5]. It provides an anti-virus engine
in the form of a shared library. The Clam-AV team keeps
maintaining the software and regularly updates the virus
signature database.

3.1 Analyzing Virus Signatures
Currently, the total number of signatures in Clam-AV is
about 150,000, and the number keeps increasing constantly.
In this paper, we take the virus database downloaded from
http://www.clamav.net on Aug 20th 2007 as a sample to
analyze the general characteristics of a typical anti-virus
signature database.

3.1.1 Three Major Types of Signatures in Clam-AV
Most of the signatures defined in Clam-AV can be
categorized into three major types.
♦ Basic Signatures: Basic signatures are all hexadecimal
strings. Clam-AV matches these signatures to the whole
content of a file according to a sub category of files.
♦ MD5 Signatures: MD5 checksum for an executable
virus file, MD5 for a white list executable file and MD5
checksum of a specific section in a Portable Executable file.

Clam-AV matches signatures to a target file’s MD5
checksum or the MD5 checksum of a specific section.
♦ Regular Expression Signatures: Actually an extended
version of the basic signatures, which support several kinds
of wildcards. Clam-AV matches these signatures to the
whole content of a file. Although Clam-AV does not fully
support standard regular expression, in this paper we refer
to this type as regular expression signatures.
Except from these three major types, there are only a few
other signatures for certain extended functions. There are
66 signatures for archive metadata and also 167 signatures
for anti-phishing.

3.1.2 Identifying Performance Bottleneck
Table 1 shows the number of signatures for three major
types and the others.

Table 1. Different Types of Signatures

 Basic MD5 Regex Other Total
Num 78501 64758 4844 233 148270

% 52.9% 43.7% 3.3% 0.16% 100.00%

In order to observe the system’s scanning overhead on
different types of signatures, we injected several lines of
codes to Clam-AV to calculate the time spent on matching
each type of signatures in a typical scan. The experiment
was performed on a 10 Mbytes randomly generated file and
the result is shown in the following table.
Table 2. Scanning Overhead on Different Types of Signatures

 Basic MD5 Regex Total
Time (s) 6.200 0.054 2.190 8.444

% 73.4% 0.64% 25.9% 100%

According to the above experiment result, obviously
matching the basic signatures consumes a large part of the
scanning time. As a result, we focus our work of this paper
on matching basic signatures to improve the virus scanning
speed on Clam-AV.

3.1.3 Further Analyzing Basic Signatures
The basic signatures are further divided into 7 subsets
according to file types, indexed from 0 to 6 for the
convenience of analysis. The signatures in each subset
apply to certain types of files. For example subset #0
applies to any file and subset #1 applies to portable
executable files [4].

Table 3. Statistics of Basic Signatures

Idx Total
Number

Average
Length

Min
Length

Len<9
Num

0 29611 67.5 10 0
1 46954 123.7 4 8
2 164 106.8 28 0
3 1402 110.7 14 0
4 355 46.6 17 0
5 0 n/a n/a 0
6 15 105.1 17 0

257257

Table 3 shows several important statistical characteristics
of the 7 subsets of basic signatures. We believe that it is
crucial and possible to designing a better pattern matching
algorithm according to the three observations.
From these analyses, we have three observations that
motivated us to design novel algorithms:
♦ Large scale signature set: Even the scale of a virus
signature subset is much bigger than a traditional IDS
system. For example, the subset #1 has 46,954 signatures
while Snort [8] only has about 3,000 signatures in total.
♦ Longer average length: The average signature length
of these 7 sub categories are from 46 to 124, which are
much longer compared to IDS signatures.
♦ Very few short signatures: Generally, signatures with
length less than 9 characters can be viewed as short
signatures. Thus, there are only 8 short signatures in subset
#1 while there are no short signatures in other subsets.

3.2 Clam-AV’s Solution and Limitations
The current version of Clam-AV used two pattern matching
algorithms. The basic signatures are handled by an
extended version of BM [2] (BMEXT) and the regular
expression signatures are handled by a modified AC [1]
algorithm.
Firstly, when implemented with DFA [9] data structure, AC
consumes a large amount of memory for such large scale
signature database. If implemented with NFA [9] data
structure, there are several memory compressing techniques
available to reduce memory consumption, however such
techniques usually come with more memory access, which
would hurt the performance badly.
Secondly, the BMEXT uses the last 3 characters of a
signature to generate shifts. Given that the average length
and shortest length of virus signatures are comparably long,
we believe larger shifts could be produced by utilizing
more characters of existing signature.

4. Multi-block Recursive Shift Indexing
 This section will first give a brief introduction to the core
idea of RSI which is the base of MRSI and then discuss
more about the motivations behind MRSI.

4.1 Brief Introduction of RSI
RSI [3] is a high performance multi pattern matching
algorithm designed specifically for IDS applications. The
core idea of RSI is to use two levels of block heuristic to
produce shifts.
♦ Block Heuristic: The original BM bad character
heuristic uses 1 character to calculate shift value [2], while
RSI uses 2 characters as a block heuristic.
♦ Stage 1: The first level uses two BLTs (Block Leap
Table), with each BLT using a 2 characters block heuristic.
In the first stage of scanning, each BLT returns a shift value.

If they are not both zeros, the larger one can be used as a
shift value.
♦ Stage 2: The second level introduces a 4 characters
block heuristic. When both BLTs return zero in the first
stage of scanning, then a Further Leap Table (FLT) is
introduced in the second stage of scanning. The FLT is an
intersection of zero entries of both BLTs in the first level,
thus it is actually a 4 characters block heuristic and the size
of the FLT is limited to the square of number of patterns.
♦ Stage 3: If the FLT in the second stage of scanning still
returns zero, a Potential Match Table (PMT) is used and
each entry of PMT links all the potential match patterns
with the same first 4 characters. Thus the size of PMT is
limited to the number of patterns.

4.2 The Problem of Adapting RSI
There are two major problems if we directly implement
RSI directly in Clam-AV.
♦ First, the size of FLT is n2 in the worst case, where n

is the number of patterns. Given that the largest virus
signature subset has about 47,000 patterns, the size of
FLT could be 470002*2 bytes, about 4 Gbytes in the
worst case. It takes too much memory and the
preprocessing of shift values for such a large FLT
could be very time consuming.

♦ Second, the possibility of getting both zeros from the
two BLTs in the first stage will increase a lot when
the number of patterns grows from 1,000 to 47,000.

Thus, we need to seek novel ideas and heuristics to resolve
these two problems.

4.3 MRSI Motivations and Solution
In section 3, we gave a thorough analysis of the virus
signatures and discussed the problem of the current
solutions in Clam-AV. Some of these observations lead to
the motivations behind MRSI in this section.

4.3.1 Using 3 BLTs
Before we explain how MRSI works, we will first present
another important observation in a deep analysis of the
basic signatures, which motivated us to use 3 BLTs in
MRSI.
Although directly adapting RSI is not practical, the idea of
using a block heuristic would be helpful in our design of a
new shift based algorithm. In order to understand the
possibilities of getting a non-zero shift by using block
heuristic, we did an analysis of the first 6 characters of all
signatures by dividing them into three 2 characters blocks.
♦ Assumption 1: every character in the content of the
target file is randomly generated by a uniform distribution
function. (P(c)=1/256, where c=0~255)
A 2 characters block has 65536 different values, which
should be also of uniform distribution given assumption 1.
However not all of them appear in the corresponding

258258

position of signatures. For example, if a value ‘x’
(0≤x≤65535) does not appear in the first 2 characters of all
signatures, there should be a non-zero shift for this value
‘x’ when ‘x’ appears in the target file. Given assumption 1,
we define the number of such values divided by 65536 to
be the possibility of non-zero shifts for this block.
Then we computed the possibility of non-zero shifts for the
first 3 blocks of all signatures (excluding signatures that are
shorter than 6) with 2 characters in each block. Then we
use P1 to stand for the possibility of non-zero shifts at block
1, P2 for block 2 and P3 for Block 3.
Thus, if we only use block 1, the possibility of non-zero
shifts equals P1. If we use two blocks, either block can
return a non-zero shift, so the possibility of non-zero shifts
for using two blocks should be:

1 1 2(1)P P P+ −

Analogically, the possibility of non-zero shifts using 3
blocks should be:

1 1 2 1 2 3(1) (1)(1)P P P P P P+ − + − −

By applying these calculations to the largest two subsets of
basic signatures, we got the results shown in Table 4.

Table 4. Possibility of Non-zero Shifts

Idx Total Num 1 BLT 2 BLTs 3 BLTs
0 29611 81.9% 91.6% 99.4%
1 46954 54.8% 79.6% 90.8%

Obviously, by using 3 blocks instead of 2 blocks or 1 block,
there could be much more potential non-zero shifts. This
motivates us to use 3 BLTs in MRSI.

4.3.2 Matching Short Signatures Separately
From our previous analysis of Clam-AV’s basic signatures
in section 1, we know that there are only 8 signatures that
are shorter than 9 characters.
By further exploring these short signatures, we found that
they are all defined with an offset. This means they should
only be matched to a specific position of a file. For
example, the shortest signature in sub category #1 is
defined as “W32.Deadc0de:1:64:dec0adde”, which means
only when the pattern “dec0adde” is matched at offset 64.
It indicates a virus called “W32.Deadc0de”.
Thus these signatures can be quickly checked by a direct
brute-force check. In our implementation of MRSI, we do
this for all patterns that are shorter than 9 characters.

4.3.3 Indexing a Potential Match Table
According to our observation 3.3.1, using 6 characters (3
BLTs) instead of 4 characters (2 BLTs) could generate
more shifts and bigger shifts, assuming randomly generated
file. The problem is how to index the potential match
signatures when all 3 BLT returns zero shifts.
The original RSI (2 Block Leap Tables) uses the zero
entries of the FLT to index a PMT, which link to all the

potential match signatures for each entry. The size of PMT
is the product of the number of zero entries in BLT1 and
the number of zero entries in BLT2. As a result, for the
subset 1 of about 50,000 signatures, the size of PMT is
estimated to be more than 1 Gbytes.
MRSI’s solution to this problem is not using a FLT but to
use zero entries in BLT1 to index PMT. In this way, the
PMT’s size can be limited to the number of zero entries in
BLT1. The trade-off is that the number of potential match
signatures in one PMT entry becomes bigger than using a
FLT. However, in a typical application environment, most
of the files do not contain any virus. The possibility of all 3
BLTs returning zero at the same time should be quite low
in such cases, consequently the possibility of actually
matching a PMT entry should be low.

4.3.4 MRSI Description
We incorporated all these three motivations into one
algorithm, Multi-block Recursive Shift Indexing (MRSI).
The MRSI algorithm can be described in two parts:

♦ Preprocessing Stage
In the preprocessing stage, the algorithm creates and
initializes all the necessary data structures for the later
scanning stage. First it creates 3 BLTs for the first 6
characters. Then a PMT is created and indexed sequentially
by the zero entries in BLT1, and each entry of the PMT is
linked to the signatures that could be a potential match at
this position.
For Example, if BLT1[α] has a zero value, all the
signatures with the same first two characters of value α
should be linked to the corresponding entry of the PMT.
♦ Scanning Stage
The scanning stage is comparably quite simply once all the
necessary data structures are created. There are two phases
in the scanning stage.

BLT 1

2

3

……

m-2

BLT 2BLT 3

E FC DA B……

Sig 2

Sig 3

……

m-1

m

Phase 1

Phase 2

PMT

Sig 1

……

1

Figure 1. Data Structures and Two Phases of Scanning

In phase 1, 6 characters will be read from the target data,
and then they are used as three keys to lookup the three

259259

BLTs respectively. If three lookup results are not all zeros,
then we get the largest one of the three shift values. The
target data can be shifted by this value, and then phase 1
will be repeated at the new position of the target data.
If all three shift values are zeros, then the PMT table will
be checked to match a list of potential match signatures.
For each potential match signature, a brute-force check is
used to validate if there is really a match.
The data structures and the two phases of scanning stage
are shown in Figure 1. The string “ABCDEF” is used as a
sample fraction in target data to demonstrate our algorithm
in Figure 1. The PMT have m entries, where m is the
number of zero entries in BLT1.

5. PERFORMANCE EVALUATION
In this section, several experiments were designed to give a
full performance evaluation of our new algorithm. First a
pure algorithm performance evaluation was performed to
help understand the performance of MRSI under different
circumstances compared to the current solution called
BMEXT in Clam-AV. We then implemented MRSI in
Clam-AV to see the actual performance improvement.

5.1 Algorithm Performance Evaluation
The experiments were all performed on an x86 Pentium 4
computer. The MRSI algorithm was written in C
programming language so that it well supports cross
platform applications.
All the Signatures were extracted from Clam-AV’s
signature database of Aug 20 2007. The largest two subsets
of the basic signatures, subset 0 and subset 1 were selected
for most of our experiments because the other subsets are
comparably very small.
The target data was a 100 Mbytes randomly generated file
using a uniform distribution function.

5.1.1 Performance on real Clam-AV Subsets
The experiments were performed with subset #0 of 29611
signatures and subset #1 of 46954 signatures. The memory
consumption of all the data structures was calculated for
both algorithms. The time cost in the scanning stage was
recorded for both algorithms and then translated to the
scanning speed in Mbps. The results are shown in Figure 1.
Figure 2 clearly shows that MRSI scanned the target data
much faster than BMEXT on both subset #0 and subset #1.
At the same time, Figure 3 shows that MRSI did not bring
in excessive memory usages. This observation can be
explained by the data structures of both algorithms.
In BMEXT, the BM shift table uses about 50~100 Kbytes
while in MRSI 3 BLTs and 1 PMT uses 64*4 = 256 Kbytes
at most. However both algorithms store a copy of all the

41.6

341.6

31.2
76.8

0
50

100
150
200
250
300
350
400

BMEXT MRSI BMEXT MRSI
Subset #1 : 46954Subset #0 : 29611

Mbps

Figure 2. MRSI vs. BMEXT: Scanning Speed

2.8 2.8

6.7 6.8

0
1
2
3
4
5
6
7
8

BMEXT MRSI BMEXT MRSI
Subset #0 : 29611 Subset #1 : 46954

Mbytes

Figure 3. MRSI vs. BMEXT: Memory Usage

patterns in the memory and they cost the major part of
memory in the above results.

5.1.2 Scalability Evaluation
In this experiment, we evaluated the scanning performance
of both algorithms on different sizes of subsets to
demonstrate the scalability of MRSI. We randomly selected
signatures from all the basic signatures to form subsets with
1K, 5K, 10K, 15K, 20K, 25K, 30K, 40K, 50K, 60K and
70K signatures.
Figure 4 shows that both algorithms’ performance dropped
as the size of the pattern set grew. However MRSI
constantly outperformed BMEXT with the size of a subset
growing from 1,000 to 70,000 signatures.

10

100

1000

0 1 2 3 4 5 6 7
x 10000BMEXT MRSIMbps

Figure 4. MRSI vs. BMEXT: Scalability

5.1.3 Performance under Attacks
In this test, a certain amount of patterns were injected to the
random generated target data. This kind of target data could
stand for potential attacking flows to the security gateways.
Here we define a percentage of matches to measure how
much of the target data actually matches a pattern. The

260260

0

20

40

60

80

0% 20% 40% 60% 80% 100%
BMEXT MRSIMbps

Figure 5. MRSI vs. BMEXT: Performance under Attacks

percentage of matches equals the sum of the lengths of all
matched patterns divided by the length of the target data.
As the percentage of matches in the target data increased,
MRSI’s performance dropped, yet still outperformed
BMEXT with 100% matches target data.

5.2 Clam-AV’s Performance
The last test was designed to evaluate the performance of a
real anti-virus system with MRSI implemented. First MRSI
was implemented in Clam-AV to replace BMEXT. Two
sets of data were used in the tests. One was a randomly
generated file of 100 Mbytes and the other was a sample set
of several executable files of about 80 Mbytes in total.

7.9

16.2 17.8

31.7

0
5

10
15
20
25
30
35
40

BMEXT MRSI BMEXT MRSI
Random Text Executables

Mbps

Figure 6. Real System Performance on Clam-AV
Figure 6 shows that for both sets of data, the performance
of Clam-AV had been improved by a factor of 1.8-2 using
MRSI.

6. CONCLUSION
Pattern matching algorithms have been a constantly
explored field by many researchers in various studies due
to its importance to network communication security. We
have distinguished our work in this paper by focusing on
anti-virus applications. Through a deep analysis of a typical
virus signature database, we managed to summarize three
keys observations, which enabled us to design a new fast
pattern matching algorithm MRSI particularly for anti-virus
applications. Various performance evaluation tests show
that MRSI outperformed the current algorithm
implemented in Clam-AV in many aspects.
Our future work contains two major parts. On one hand, we
will go on seeking new observations and novel ideas to
further improve the algorithm’s performance. On the other
hand, we plan to implement MRSI on new-generation

multi-core network processors in order to obtain multi-
Gbps virus scanning speed.

7. REFERENCES
[1] A. V. Aho and M. J. Corasick, Efficient string

matching: An aid to bibliographic search,
Communications of the ACM, 18(6):333–340, 1975.

[2] R. S. Boyer and J. S. Moore. A fast string searching
algorithm, Communications of the ACM, 20(10),
1977.

[3] B. Xu, X. Zhou and J. Li, Recursive shift indexing: a
fast multi-pattern string matching Algorithm, Proc. of
the 4th International Conference on Applied
Cryptography and Network Security (ACNS), 2006.

[4] T. Kojm, Clam-AV, In http://www.clamav.net, 2004.
[5] Sourcefire, Introduction to Clam-AV.

http://www.sourcefire.com/products/clamav, 2007
[6] O. Erdogan and P. Cao, Hash-AV: fast virus

signature scanning by cache-resident filters, Proc. Of
the International Conference on Systems and Networks
Communications (ICSNC), 2007

[7] F. Skulason, The evolution of polymorphic viruses, In
http://vx.netlux.org/lib/static/vdat/polyevol.htm, 2004.

[8] M. Roesch, Snort: Network intrusion detection system,
In http://www.snort.org, 2004.

[9] M. Norton, Optimizing Pattern Matching for Intrusion
Detection, In
http://docs.idsresearch.org/OptimizingPatternMatching
ForIDS.pdf, 2004

[10] M. Fisk and G. Varghese, An analysis of fast string
matching applied to content-based forwarding and
intrusion detection, Technical Report CS2001-0670,
University of California – San Diego, 2002.

[11] K. G. Anagnostakis, S. Antonatos, E. P. Markatos, and
M. Polychronakis, E2xB: A domain-specific string
matching algorithm for intrusion detection, Proc. of
IFIP International Information Security Conference
(SEC'03), 2003.

[12] S. Wu and U. Manber, A fast algorithm for multi-
pattern searching, Technical Report TR-94-17,
Department of Computer Science, University of
Arizona, 1994.

[13] C. J. Coit, S. Staniford, and J. McAlerney, Towards
faster pattern matching for intrusion detection, or
exceeding the speed of snort, Proc. of the 2nd DARPA
Information Survivability Conference and Exposition
(DISCEX ІІ), 2002.

[14] C. P. W. Y. Miretskiy, A. Das and E. Zadok. Avfs: An
on-access anti-virus file system. Proc. of the 13th
USENIX Security Symposium, 2004.

261261

